نوع مقاله : مقاله پژوهشی Released under CC BY-NC 4.0 license I Open Access I
نویسندگان
1 گروه تربیت بدنی و علوم ورزشی، دانشکدة علوم انسانی، دانشگاه شاهد، تهران، ایران.
2 گروه تربیت بدنی و علوم ورزشی دانشکده علوم انسانی، دانشگاه شاهد، تهران، ایران.
3 گروه تربیت بدنی و علوم ورزشی، دانشکدة علوم انسانی، دانشگاه شاهد، تهران، ایران .
چکیده
مقدمه: فعالیت ورزشی می تواند عملکرد مغز را تقویت و از آن محافظت می کند. با وجود این یکی از علل اصلی عدم انجام فعالیت ورزشی به مقدار توصیه شده، کمبود زمان است. هدف پژوهش حاضر تعیین تأثیر تمرین تناوبی سرعتی برمقادیر عامل رشد عصبی و یادگیری و حافظۀ فضایی موشهای صحرایی بالغ بود.
روش پژوهش: برای انجام کار 16 سر رت نر بالغ به دو گروه مساوی تقسیم شدند (کنترل و تمرین تناوبی 9 تکرار 10 - سرعتی). پروتکل تمرین تناوبی سرعتی شامل 8 هفته دویدن روی تردمیل بود (سه جلسه در هفته، 4 ثانیه ای با 1 دقیقه استراحت بین تکرارها). در انتهای هفتۀ هشتم، عملکرد شناختی رتها با استفاده از آزمون شاتل بررسی شد. در پایان، رتها بیهوش و هیپوکمپ برداشته شده و مقادیر عامل رشد عصبی سنجیده شد.
یافته ها: یافته ها نشان داد سطوح عامل رشد عصبی هیپوکامپ در گروه تمرین تناوبی سرعتی نسبت به گروه کنترل به طور معناداری بالاتر بود ( 0/001=p).همچنین در گروه تمرین ورزشی عملکرد رتها در آزمون ماز Yو شاتل باکس بهتر از گروه کنترل بود، اما میزان تفاوت از نظر آماری معنادار نبود(0/05<p).
نتیجه گیری: براساس یافته های پژوهش حاضر، به نظر می رسد تمرینات تناوبی سرعتی (با تکرارهای 10 ثانیه ای) می تواند موجب افزایش سطح عامل رشد عصبی هیپوکمپ شود، اگرچه برای بهبود دانش ما در مورد تأثیر آن برعملکرد شناختی به تحقیقات بیشتری نیاز است.
کلیدواژهها
عنوان مقاله [English]
The Effect of Sprint Interval Training on Hippocampal Nerve Growth Factor and Cognitive Performance in Male Wistar Rats
نویسندگان [English]
- Elham Azizi 1
- Esmail Nasiri 2
- Maryam Khalesi 3
1 Department of Physical Education and Sports Sciences, Faculty of Humanities, Shahed University, Tehran, Iran.
2 Department of Physical Education and Sports Sciences, Faculty of Humanities, Shahed University, Tehran,
3 Department of Physical Education and Sports Sciences, Faculty of Humanities, Shahed University, Tehran, Iran .
چکیده [English]
Introduction: Sports activities can protect the brain and improve its function. However, the lack of time is one of the primary reasons for not participating in the recommended amount of sports activities. Therefore, the present study aimed to investigate the effects of sprint interval training (SIT) on hippocampal nerve growth factor (NGF) levels, learning, and spatial memory in adult male rats.
Methods: For this, 16 male Wistar rats were divided into two equal groups (control and SIT). The SIT protocol consisted of eight weeks of running on the treadmill (three sessions per week, 4-9 repetitions of 10 seconds sprints, and 1 min rest between repetitions). At the end of the eighth week, the rats’ cognitive performance was evaluated using the shuttle box and Y-maze avoidance tests. Finally, rats were anesthetized and the hippocampus was removed and NGF levels were measured.
Results: The findings showed that in the SIT group, the hippocampal NGF levels were significantly higher than the control group (p=0.001). Moreover, rats in the SIT group had better performance in the shuttle box and Y-maze avoidance tests than the control group, but the difference between groups was not statistically significant (p>0.05).
Conclusion: Based on the findings of the present study, it seems that SIT (with 10 seconds repetitions) can increase the hippocampal NGF levels, though, to improve our knowledge about its effect on cognitive performance, more studies are needed
کلیدواژهها [English]
- Hippocampus
- Learning
- Memory
- Nerve growth Factor
- Sprint Interval Training
Gomez, M C, Vina, J, Higuchi, M, Suzuki, K, Boldogh, I, & Radak, Z. (2019). Exercise and Probiotics
Attenuate the Development of Alzheimer’s Disease in Transgenic Mice: Role of Microbiome.
Experimental Gerontology, 115,122–31.
Asadi, M, Rahmani, Mo, Samadi, A, & Kalantari Hesari, A. (2022). Acetylsalicylic Acid‐induced
Alterations in Male Reproductive Parameters in Wistar Rats and the Effect of Sprint Interval Training.
Andrologia, 54(3),e14339. (In Persian)
Bahmani, E, Hoseini, R, & Amiri, E. (2021). The Compensatory Increased BDNF and NGF in Patients with
Multiple Sclerosis Following Home-Based Aerobic Training and Vitamin D Supplementation During
COVID-19 Outbreak. (In Persian)
Belviranli, M, & Okudan, N. (2015). The Effects of Ginkgo Biloba Extract on Cognitive Functions in Aged
Female Rats: The Role of Oxidative Stress and Brain-Derived Neurotrophic Factor. Behavioural Brain
Research, 278,453–61.
Belviranli, M, Okudan, N, Atalik, K, & Öz, M. (2013). Curcumin Improves Spatial Memory and Decreases
Oxidative Damage in Aged Female Rats. Biogerontology, 14(2),187–96.
Belviranlı, M, & Okudan, N. (2018). Exercise Training Protects Against Aging-Induced Cognitive
Dysfunction via Activation of the Hippocampal PGC-1α/FNDC5/BDNF Pathway. Neuromolecular
Medicine. 20(3),386–400.
Belviranlı, M., & Okudan, N. (2022). Differential effects of voluntary and forced exercise trainings on spatial learning ability and hippocampal biomarkers in aged female rats. Neuroscience letters, 773, 136499.
Carito, V, Ceccanti, M, Ferraguti, G, Coccurello, R, Ciafrè, S, Tirassa, P, & Fiore, M. (2019). NGF and
BDNF Alterations by Prenatal Alcohol Exposure. Current Neuropharmacology, 17(4),308.
Chen, Z. R., Huang, J. B., Yang, S. L., & Hong, F. F. (2022). Role of Cholinergic Signaling in Alzheimer's Disease. Molecules (Basel, Switzerland), 27(6), 1816.
Claudio C, A., Pentz, R, & Hall, H. (2019). The Brain NGF Metabolic Pathway in Health and in Alzheimer’s
Pathology. Frontiers in Neuroscience, 13(FEB).
Dobryakova, Yu. V., Zaichenko, M. I., Spivak, Yu. S., Stepanichev, M. Yu., Markevich, V. A., &
Bolshakov, A. P. (2021). Overexpression of Nerve Growth Factor in the Hippocampus Induces
Behavioral Changes in Rats with 192IgG-Saporin-Induced Cholinergic Deficit. Neurochemical
Journal,2021 15:3. 15(3),273–81.
Eu, W. Z., Chen, Y. J., Chen, W. T., Wu, K. Y., Tsai, C. Y., Cheng, S. J., Carter, R. N., & Huang, G. J. (2021). The effect of nerve growth factor on supporting spatial memory depends upon hippocampal cholinergic innervation. Translational psychiatry, 11(1), 162.
Fanaei, H, Riki, F, Khayat, S, & Bornavard, M. (2020). Brain-Derived Neurotrophic Factor and Nerve
Growth Factor Concentrations in Maternal and Umbilical Cord Blood of Opium-Addicted Mothers.
International Journal of Developmental Neuroscience, 80(7),594–600.
Fernandes, M. S. S., Silva, L. L. S. E., Kubrusly, M. S., Lima, T. R. L. A., Muller, C. R., Américo, A. L. V., Fernandes, M. P., Cogliati, B., Stefano, J. T., Lagranha, C. J., Evangelista, F. S., & Oliveira, C. P. (2020). Aerobic Exercise Training Exerts Beneficial Effects Upon Oxidative Metabolism and Non-Enzymatic Antioxidant Defense in the Liver of Leptin Deficiency Mice. Frontiers in endocrinology, 11, 588502.
Gibala, Martin J. (2007). High-Intensity Interval Training: A Time-Efficient Strategy for Health Promotion? Current Sports Medicine Reports, 6(4),211–13.
Gonzalez, S., McHugh, T. L. M., Yang, T., Syriani, W., Massa, S. M., Longo, F. M., & Simmons, D. A. (2022). Small molecule modulation of TrkB and TrkC neurotrophin receptors prevents cholinergic neuron atrophy in an Alzheimer's disease mouse model at an advanced pathological stage. Neurobiology of disease, 162, 105563.
Hall, J., Gomez-Pinilla, F, & Savage, L. (2018). Nerve Growth Factor Is Responsible for Exercise-Induced
Recovery of Septohippocampal Cholinergic Structure and Function. Frontiers in Neuroscience,12(NOV),773.
Khabour, O., Alzoubi, K., Alomari, Mahmoud A., & Alzubi, Mohammad A. (2013). Changes in Spatial
Memory and BDNF Expression to Simultaneous Dietary Restriction and Forced Exercise. Brain
Research Bulletin, 90(1),19–24.
Latina, V, Caioli, S, Zona, Cr, Ciotti, M Teresa, Borreca, A, Calissano, P, & Amadoro, G. (2018). NGF -
Dependent Changes in Ubiquitin Homeostasis Trigger Early Cholinergic Degeneration in Cellular and
Animal AD-Model. Frontiers in Cellular Neuroscience, 12,487.
Lippi, G, Mattiuzzi, C, & Sanchis, F. (2020). Updated Overview on Interplay between Physical Exercise,
Neurotrophins, and Cognitive Function in Humans. Journal of Sport and Health Science, 9(1),74–81.
Machado, M. V., Vieira, A. B., da Conceição, F. G., Nascimento, A. R., da Nóbrega, A. C. L., & Tibirica, E. (2017). Exercise training dose differentially alters muscle and heart capillary density and metabolic functions in an obese rat with metabolic syndrome. Experimental physiology, 102(12), 1716–1728.
Metcalfe, R., Atef, H, Mackintosh, K, McNarry, Me, Ryde, G, Hill, D., & Vollaard, N. (2020). Time-
Efficient and Computer-Guided Sprint Interval Exercise Training for Improving Health in the Workplace:
A Randomised Mixed-Methods Feasibility Study in Office-Based Employees. BMC Public Health,
20(1),313.
Mladenovic D, Aleksandra, P, Milka, T, Vesna, T, Nikola, R, Ljubisav, R, Sabera, & Kanazir, S. (2010).
Long-Term Dietary Restriction Modulates the Level of Presynaptic Proteins in the Cortex and
Hippocampus of the Aging Rat. Neurochemistry International, 56(2),250–55.
Mora, F, Segovia, G, & del Arco, A. (2007). Aging, Plasticity and Environmental Enrichment: Structural
Changes and Neurotransmitter Dynamics in Several Areas of the Brain. Brain Research Reviews,
55(1),78–88.
Rocco, M, Soligo, M, Manni, L, & Aloe, L. (2018). Nerve Growth Factor: Early Studies and Recent Clinical
Trials. Current Neuropharmacology, 16(10),1455–65.
Sequeira, S., Cruz, C., Pinto, D., Santos, L., & Marques, A. (2011). Prevalence of Barriers for Physical
Activity in Adults According to Gender and Socioeconomic Status. British Journal of Sports Medicine,
45(15),A18–19.
Shekari, A, & Fahnestock, M. (2022). Retrograde Axonal Transport of Neurotrophins in Basal Forebrain
Cholinergic Neurons. Methods in Molecular Biology (Clifton, N.J.), 2431,249–70.
Sohn, E., Lim, H. S., Kim, Y. J., Kim, B. Y., Kim, J. H., & Jeong, S. J. (2019). Elaeagnus glabra f. oxyphylla Attenuates Scopolamine-Induced Learning and Memory Impairments in Mice by Improving Cholinergic Transmission via Activation of CREB/ NGF Signaling. Nutrients, 11(6), 1205.
Vollaard, N. B. J., & Metcalfe, R. S. (2017). Research into the Health Benefits of Sprint Interval Training Should Focus on Protocols with Fewer and Shorter Sprints. Sports medicine (Auckland, N.Z.), 47(12), 2443–2451.
Xu, B, Zhang, X, Song, Ch, Liang, F, Zhang, L, & Li, Z. (2017). Voluntary Running Enhances Hippocampal
Proliferation by Increasing Hippocampal NGF, BDNF, and IGF-1. http://www.Sciencepublishinggroup.Com,5(1),1.
Yan, T., Zhang, Z., & Li, D. (2020). NGF receptors and PI3K/AKT pathway involved in glucose fluctuation-induced damage to neurons and α-lipoic acid treatment. BMC neuroscience, 21(1), 38.
Zahra K, Mohsen K, & Leyla Gh. (2012). The Effect of Aqueous Crocus Sativus L. (Saffron) Extract on
Learning and Memory in Male Streptozotocin-Induced Diabetic Rats. Razi Journal of Medical Sciences,
19(95),44-51. (In Persian)
Zhang, L., Tang, W., Chao, F. L., Zhou, C. N., Jiang, L., Zhang, Y., ... & Tang, Y. (2020). Four-month treadmill exercise prevents the decline in spatial learning and memory abilities and the loss of spinophilin-immunoreactive puncta in the hippocampus of APP/PS1 transgenic mice. Neurobiology of Disease, 136, 104723.